The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesistwo crucial arms of cancer growth-AMPK also ensures viability by metabolic reprogramming in cancer cells. AMPK activation by two indirect AMPK agonists AICAR and metformin (now in over 50 clinical trials on cancer) has been correlated with reduced cancer cell proliferation and viability. Surprisingly, we found that compared with normal tissue, AMPK is constitutively activated in both human and mouse gliomas. Therefore, we questioned whether the antiproliferative actions of AICAR and metformin are AMPK independent. Both AMPK agonists inhibited proliferation, but through unique AMPK-independent mechanisms and both reduced tumor growth in vivo independent of AMPK. Importantly, A769662, a direct AMPK activator, had no effect on proliferation, uncoupling high AMPK activity from inhibition of proliferation. Metformin directly inhibited mTOR by enhancing PRAS40's association with RAPTOR, whereas AICAR blocked the cell cycle through proteasomal degradation of the G2M phosphatase cdc25c. Together, our results suggest that although AICAR and metformin are potent AMPK-independent antiproliferative agents, physiological AMPK activation in glioma may be a response mechanism to metabolic stress and anticancer agents.metabolism | glioma A MP-activated protein kinase (AMPK) is a molecular hub for cellular metabolic control (1-4). It is a heterotrimer of catalytic α, regulatory β, and γ subunits. The rising AMP:ATP ratio during energy stress leads to AMP-dependent phosphorylation of the catalytic α subunits. This activates AMPK which then phosphorylates numerous substrates to restore energy homeostasis. It phosphorylates acetyl CoA carboxylase (ACCα) to inhibit fatty acid (FA) synthesis (5) and TSC2 and RAPTOR (6, 7) to inhibit mammalian target of rapamycin (mTOR)C1. Because fatty acid synthesis and mTORC1 activity are essential for cell proliferation and growth (8), AMPK activation with two indirect AMPK agonists AICAR and metformin have been correlated with suppression of cell proliferation and growth (9-11).AICAR is metabolized to an AMP mimetic, ZMP that activates AMPK (12). Although AICAR does inhibit proliferation (11-15), it also causes AMPK-independent cellular and metabolic effects (12, 16) including inhibition of glucokinase, glycogen phosphorylase, and nucleotide biosynthesis (17, 18). Whether AICAR requires AMPK to suppress proliferation is questionable because although both AICAR and 2-deoxyglucose activated AMPK, only AICAR inhibited proliferation of trisomic mouse fibroblasts (11). Moreover, although AICAR strongly increases glucose uptake through AMPK activation in muscle cells, it reduced fluorodeoxyglucose-PET signals and inhibited glioma gro...