Characteristics of molecularly thin lubricant films are basically determined by their interactions with solid surfaces. Since these interactions can be modified by engineered microscopic surface textures, it is expected that rational design of the textures will make it possible to attain desired tribological functions and performance. In this research, with the aim of applying it to head-disk interface of hard disk drives, we propose a method based on diffraction simulations that enables thickness measurement of molecularly thin films coated on grooved solid surfaces. Using this method, we experimentally investigate the spreading characteristics of nanometer-thick polymeric liquid lubricant films on grooved surfaces. The results revealed that the average thicknesses of the films dipcoated on the grooved and smooth surfaces under identical conditions were approximately the same, whereas lubricant spreading on grooved surfaces was significantly faster than that on smooth surfaces.