Micro-electro-mechanical systems (MEMS) have enabled new techniques for the miniaturization of sensors suitable for Structural Health Monitoring (SHM) applications. In this study, MEMS-based sensors, specifically Piezoelectric Micromachined Ultrasonic Transducers (PMUT), are used to evaluate and monitor the pre-tensioning of a bolted joint structural system. For bolted joints to function properly, it is essential to maintain a suitable level of pre-tensioning. In this work, an array of PMUTs attached to the head and to the end of a bolt, serve as transmitter and receiver, respectively, in a pitch-catch Ultrasonic Testing (UT) scenario. The primary objective is to detect the Change in Time of Flight (CTOF) of the acoustic wave generated by the PMUT array and propagating along the bolt’s axis between a non-loaded bolt and a bolt in service. To model the pre-tensioning of bolted joints and the transmission of the acoustic wave to and from a group of PMUTs through the bolt, a set of numerical models is created. The CTOF is found to be linearly related to the amount of pre-tensioning. The numerical model is validated through comparisons with the results of a preliminary experimental campaign.