Recent years have witnessed pilot deployments of inexpensive wireless sensor networks (WSNs) for active volcano monitoring. This paper studies the problem of picking arrival times of primary waves (i.e., P-phases) received by seismic sensors, one of the most critical tasks in volcano monitoring. Two fundamental challenges must be addressed. First, it is virtually impossible to download the real-time high-frequency seismic data to a central station for P-phase picking due to limited wireless network bandwidth. Second, accurate P-phase picking is inherently computationintensive, and is thus prohibitive for many low-power sensor platforms. To address these challenges, we propose a new P-phase picking approach for hierarchical volcano monitoring WSNs where a large number of inexpensive sensors are used to collect fine-grained, real-time seismic signals while a small number of powerful coordinator nodes process collected data and pick accurate P-phases. We develop a suite of new in-network signal processing algorithms for accurate P-phase picking, including lightweight signal pre-processing at sensors, sensor selection at coordinators as well as signal compression and reconstruction algorithms. Testbed experiments and extensive simulations based on real data collected from a volcano show that our approach achieves accurate Pphase picking while only 16% of the sensor data are transmitted.