Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Air density variations around an airborne directed energy system distort a beam’s wavefront, resulting in degraded performance after propagation into the far field. Adaptive optics (AO) can be used to correct for these rapidly evolving aero-optical aberrations; however, in some conditions, the inherent latency between measurement and correction in state-of-the-art AO systems results in significantly reduced performance. Predictive AO control methods utilize future state predictions to compensate for rapidly evolving distortions and are promising techniques for mitigating this limitation. This paper demonstrates an application of the dynamic mode decomposition (DMD) method on turbulent boundary layer wavefront data from supersonic and transonic wind tunnel flow from the Air Force Research Laboratory’s Aero-Effects Laboratory. DMD is a lightweight algorithm used to isolate spatiotemporal patterns in a dataset into physically meaningful modes with associated dynamics, which were used to predict future states from a given wavefront. This method showed notable improvements in simulated wavefront correction, providing a reduction of residual wavefront distortion, measured as root mean square over the aperture, by up to 25.4% over a simulated latency model, which could accordingly result in higher laser system performance.
Air density variations around an airborne directed energy system distort a beam’s wavefront, resulting in degraded performance after propagation into the far field. Adaptive optics (AO) can be used to correct for these rapidly evolving aero-optical aberrations; however, in some conditions, the inherent latency between measurement and correction in state-of-the-art AO systems results in significantly reduced performance. Predictive AO control methods utilize future state predictions to compensate for rapidly evolving distortions and are promising techniques for mitigating this limitation. This paper demonstrates an application of the dynamic mode decomposition (DMD) method on turbulent boundary layer wavefront data from supersonic and transonic wind tunnel flow from the Air Force Research Laboratory’s Aero-Effects Laboratory. DMD is a lightweight algorithm used to isolate spatiotemporal patterns in a dataset into physically meaningful modes with associated dynamics, which were used to predict future states from a given wavefront. This method showed notable improvements in simulated wavefront correction, providing a reduction of residual wavefront distortion, measured as root mean square over the aperture, by up to 25.4% over a simulated latency model, which could accordingly result in higher laser system performance.
Schlieren imaging is widely adopted in applications where fluid dynamics features are of interest. However, traditional Z-type schlieren systems utilizing on-axis mirrors generally require large system footprints due to the need to use high f-number mirrors. In this context, off-axis parabolic (OAP) mirrors provide an attractive alternative for permitting the use of smaller f-number optics, but well-documented methodologies for designing schlieren systems with OAP mirrors are lacking. The present work outlines a ray-tracing-based workflow applied to the design of a modified Z-type schlieren system utilizing OAP mirrors. The ray-tracing analysis evaluates the defocus and distortion introduced by schlieren optics. The results are used along with system size and illumination efficiency considerations to inform the selection of optimal optical components capable of producing high-quality schlieren images while minimizing the system footprint. As a step-by-step demonstration of the design methodology, an example schlieren system design is presented. The example schlieren design achieved an image resolution of 1.1 lp/mm at 50% contrast, with a 60% reduction in system length compared to traditional Z-type systems with f/8 mirrors; distortion characterizations of the designed schlieren system showed good agreement with ray-tracing predictions, and the distortion can be corrected through image post-processing. The current work provides a systematic approach for the design of compact schlieren systems with OAP mirrors and demonstrates the utility of this underutilized option.
Planar and volumetric density measurements in the wake region behind a mounted hemispherical turret are obtained using laser Rayleigh scattering. The measurements are conducted in a Mach 2 wind tunnel facility at the Kirtland Air Force Base. Quantitative measurements of density and contour plots with lines of constant density are computed, thus enabling visualization of the turret wake’s fluid dynamics. A new, to the best of our knowledge, laser diagnostic methodology and configuration for capturing laser images is also presented. This methodology enables further suppression of background light scattering. Multi-dimensional single-shot and time-average measurements are recorded at multiple axial locations behind the turret. The images acquired reveal turbulent regions of the wake flow, and a discussion of the observed phenomena is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.