Monitoring particulate matter (PM) and its chemical constituents in classrooms is a subject of special concern within the scientific community in order to control and minimize child exposure. Regulatory sampling methods have presented several limitations in their application to larger number of classrooms due to operational and financial constraints. Consequently, passive sampling methodologies using filters were developed for indoor sampling. However, such methodologies could not provide parallel information for outdoors, which is important to identify pollution sources and assess outdoor contribution to the indoors. Therefore, biomonitoring with transplanted lichens, a technique usually applied for outdoor studies, was used both indoor and outdoor of classrooms. Three main objectives were proposed, to (i) characterize simultaneously indoor and outdoor of classrooms regarding inorganic air pollutants, (ii) investigate spatial patterns of lichen conductivity, and (iii) assess pollution sources that contribute to a poor indoor air quality in schools. Lichens Flavoparmelia caperata were transplanted to indoor and outdoor of classrooms for 59 d. After exposure, electric conductivity of lichens leachate was measured to evaluate lichen vitality and cell damage. Outdoors lichen conductivity was higher near the main highways, and indoors there was great variability in levels, which indicates different emissions sources and different ventilation patterns. Chemical content of lichens was assessed by instrumental neutron activation analysis (INAA), and As, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sb, Sc, Sm, Sr, Ta, Th, Yb, and Zn were determined. Element accumulation, crustal enrichment factors, and spatial variability of elements were analyzed and contaminants from anthropogenic sources, such as traffic (As, Sb, and Zn) and indoor chalk (Ca) found. Classrooms with potential indoor air quality problems were identified by presenting higher accumulations of inorganic pollutants in exposed biomonitors.