Air Quality Classification Using Extreme Gradient Boosting (XGBOOST) Algorithm
Albi Mulyadi Sapari,
Asep Id Hadiana,
Fajri Rakhmat Umbara
Abstract:Air pollution is a serious issue caused by vehicle exhaust, industrial factories, and piles of garbage. The impact is detrimental to human health and the environment. To quickly and accurately monitor classification, techniques are used. One efficient and accurate classification algorithm is XGBoost, a development of the Gradient Decision Tree (GDBT) with several advantages, such as high scalability and prevention of overfitting. The parameters used in the classification include (PM10), (PM2,5),(SO2),(CO),(O3)… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.