In the North Sea region, poor air quality has serious implications for human health and the related societal costs are considerable. The state of air pollution is often used as a proxy for air quality. This chapter focuses on the two atmospheric pollutants of most significance to human health in Europe-particulate matter and ground-level ozone. These are also important 'climate forcers'. In the North Sea area, the effects on air quality of emission changes since preindustrial times are stronger than the effects of climate change. According to model simulations, this is also the case for future air quality in the North Sea region, but substantial variation in model results implies considerable uncertainty. Short-term events such as heat waves can have substantial impacts on air quality and some regional climate models suggest that heat waves may become more frequent in the coming decades. If the reductions in air pollutant emissions expected through increasingly stringent policy measures are not achieved, any increase in the severity or frequency of heat waves may have severe consequences for air quality. Climate and air quality interact in several ways and mitigation optimised for a climate or air quality target in isolation could have synergistic or antagonistic effects.
IntroductionThe state of air pollution is often expressed as air quality. The concentrations of gaseous pollutants and particulate matter are then used as a measure of air quality. However, it is often not meaningful to discuss air quality without addressing the multiple impacts of air pollution. Major air pollutants may be clustered according to their properties and impacts, and this is shown in Fig. 16.1. After being emitted into the atmosphere pollutants undergo chemical oxidation and form new compounds with different properties and impacts. Pollutants then remain in the atmosphere until they are removed through cloud and precipitation processes or by direct deposition to the earth's surface. Differences in chemical reactivity and removal rates result in atmospheric lifetimes ranging from seconds to months. Air quality and related impacts are therefore influenced by local meteorological features, regional (transboundary) processes, and intercontinental transport. The pathway from emissions to impacts is complex. The focus in this chapter is limited to impacts on human health, climate, and climate-air quality interactions and mainly excludes impacts on ecosystems (acidification, eutrophication, carbon sequestration, crops, and vegetation) and materials. Impacts of climate change on ecosystems are covered in Chaps. 8, 9, 10, and 11. Air quality and climate interact in several ways. Air pollutants can affect climate both directly and indirectly through their influence on the radiative balance of the atmosphere. Primary particulate matter (primary PM, Fig. 16.1 having a negligible direct radiative ('greenhouse') effect, have an important indirect climate effect by acting as precursors for components that are both harmful pollutants and a...