The noise produced by a contra-rotating ventilator can cause injury to humans. Therefore, it is important to reduce noise caused by ventilators. In this study, the Ffowcs Williams and Hawkings (FW-H) model was used to simulate the acoustics of four different axial impeller spacing points based on the unsteady flow field through a FBD No. 8.0 contra-rotating ventilator. Experiments were conducted to verify the correctness of the numerical model. Meanwhile, the Variable Frequency Drive (VFD) drives the two motors of 55 kW to give the impellers different speeds to distinguish different conditions. The results showed that the main noise source of the ventilator was the two rotating impellers and the area between them. For the same axial space, the noise decreased with the increase of flow rate and then decreased. And the amplitude of the discrete pulse increased gradually. It can be concluded that the vortex acoustics decreased gradually with the increase of flow rate and the rotating acoustics were the major contributor. With the axial distance increasing, the noise caused by the two impellers was weak, and the frequencies of sound pressure level moved toward medium-and low-frequency bands gradually. The suitable axial space could reduce noise and improve the working environment.