Halomonas species, which are aerobic, alkaliphilic, and moderately halophilic bacteria, produce diverse biochemicals. To identify food-related Halomonas strains for bioremediation and the industrial production of biochemicals, 20 strains were isolated from edible seashells, shrimp, and umeboshi (pickled Japanese plum) factory effluents. All isolates were phylogenetically classified into a large clade of Halomonas species. Most isolates, which grew in wide pH (6-13) and salt concentration (0-14%) ranges, exhibited the intracellular accumulation of poly(3-hydroxybutyrate) granules. The characteristics of these isolates varied. A020 isolated from umeboshi factory effluents exhibited enhanced stress tolerance and proliferation and comprised two plasmids. IMZ03 and A020 grew to more than 200 OD 600 , while IMZ03 produced 3.5% 3-hydroxybutyrate in inorganic medium supplemented with 10% sucrose. The mucus of TK1-1 cultured on agar medium comprised approximately 64 mM of ectoine. Whole-genome sequencing of A020 was performed to elucidate its origin and genomic characteristics. The genome analysis revealed a region exhibiting synteny with a large virus genome isolated from the ocean, but did not identify any predictable pathogenic genes. Therefore, saline foods and related materials may be suitable resources for isolating Halomonas strains exhibiting unique, useful, and innocuous features.