Purpose of ReviewWe review our understanding of mechanisms underlying the response of (sub)tropical clouds to global warming, highlight mechanisms that challenge our understanding, and discuss simulation strategies that tackle them. Recent Findings Turbulence-resolving models and emergent constraints provide probable evidence, supported by theoretical understanding, that the cooling cloud radiative effect (CRE) of low clouds weakens with warming: a positive low-cloud feedback. Nevertheless, an uncertainty in the feedback remains. Climate models may not adequately represent changing SST and circulation patterns, which determine future cloud-controlling factors and how these couple to clouds. Furthermore, we do not understand what mesoscale organization implies for the CRE, and how moisture-radiation interactions, horizontal advection, and the profile of wind regulate low cloud, in our current and in our warmer climate. Summary Clouds in nature are more complex than the idealized cloud types that have informed our understanding of the cloud feedback. Remaining major uncertainties are the coupling of clouds to large-scale circulations and to the ocean, and mesoscale aggregation of clouds.