The paper introduces an engineering method for assessing the aerodynamic effect of disturbed atmosphere on an aircraft. As a source of vortex structures, we can consider vortex wind wakes that arise when the atmospheric wind flows around the landscape, large structures, moving or stationary aircraft-carrying platforms, vortex wakes behind aircraft, etc. In this study, we consider the situation when a light transport aircraft and an aircraft of the MC-21 type get into the vortex wake behind the super-heavy aircraft A-380 when flying along the glide path. A coherent vortex structure behind the A-380 is formed by the grid method within the framework of the boundary value problem for the Reynolds-averaged Navier —Stokes equations. The evolution and stochastics of the far wake are carried out using the author’s computer code written in the MATLAB system, within the framework of discrete vortices with a Rankine core. The assessment of the increment of forces and moments from the effect of the vortex system on the aircraft was carried out using the panel method.