Circularly polarized luminescent (CPL) materials have received significant attention in the field of fundamental science recently. These materials offer substantial advancement of technological applications, such as optical data storage, displays, and quantum communication. Various strategies have been proposed in self‐assembled materials consisting of inorganic, organic, and hybrid systems, particularly in the chiral orientationally ordered soft matter systems (e.g., chiral liquid crystals (LCs) and LC polymers). However, developing scientific approaches to achieve the pronounced and steerable circularly polarized light emission remains challenging. Herein, we present a comprehensive review on the recent development of CPL materials based on chiral LCs, including thermotropic LCs (cholesteric LCs and bent‐core LCs), lyotropic LCs (nanocellulose LCs and polyacetylene‐based LCs), and LC polymers (cholesteric LC‐based polymers, helical nanofibers, and helical network). In addition, the fundamental mechanisms, design principles, and potential applications based on these chiral LCs and LC polymers in soft matter systems are systematically reviewed. This review summarizes with a prospect on the latent challenges, which can strengthen our understanding of the basic principles of CPL in chiral orientationally ordered soft matter systems and provide a new insight into the progress in several fields, such as chemistry, materials science, optics, electronics, and biology.