Respiratory failure is a common reason for pediatric intensive care unit admission. The vast majority of children requiring mechanical ventilation can be supported with conventional mechanical ventilation (CMV) but certain cases with refractory hypoxemia or hypercapnia may require more advanced modes of ventilation. This paper discusses what we have learned about the use of advanced ventilator modes [e.g., high-frequency oscillatory ventilation (HFOV), high-frequency percussive ventilation (HFPV), high-frequency jet ventilation (HFJV) airway pressure release ventilation (APRV), and neurally adjusted ventilatory assist (NAVA)] from clinical, animal, and bench studies. The evidence supporting advanced ventilator modes is weak and consists of largely of single center case series, although a few RCTs have been performed. Animal and bench models illustrate the complexities of different modes and the challenges of applying these clinically. Some modes are proprietary to certain ventilators, are expensive, or may only be available at well-resourced centers. Future efforts should include large, multicenter observational, interventional, or adaptive design trials of different rescue modes (e.g., PROSpect trial), evaluate their use during ECMO, and should incorporate assessments through volumetric capnography, electric impedance tomography, and transpulmonary pressure measurements, along with precise reporting of ventilator parameters and physiologic variables.