2009
DOI: 10.1590/s0100-67622009000600015
|View full text |Cite
|
Sign up to set email alerts
|

Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto

Abstract: e .RESUMO -Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP), da altura total (Ht) e do clone. Foram utilizadas 21 cubagens de povoamentos de clones de eucalipto com DAP variando de 4,5 a 28,3 cm e altura total de 6,6 a 33,8 m, num total de 862 árvores. O modelo volumétrico de Schumache… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
28
0
42

Year Published

2012
2012
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 66 publications
(72 citation statements)
references
References 6 publications
2
28
0
42
Order By: Relevance
“…As observed in the frequency histogram of percentage errors of ANN2 estimates, 73% of the data were wrong in the range of -10 to 10% when submitted to training, while in the validation process for the same interval the data missed 63% (Figure 3). Considering the results found in the present work, it can be verified that the artificial neural networks are efficient to estimate the individual volume variable in Eucalyptus forest stands, also corroborated by the studies developed by Silva et al (2009 and Miguel et al (2016).…”
Section: Volume Estimatessupporting
confidence: 90%
See 1 more Smart Citation
“…As observed in the frequency histogram of percentage errors of ANN2 estimates, 73% of the data were wrong in the range of -10 to 10% when submitted to training, while in the validation process for the same interval the data missed 63% (Figure 3). Considering the results found in the present work, it can be verified that the artificial neural networks are efficient to estimate the individual volume variable in Eucalyptus forest stands, also corroborated by the studies developed by Silva et al (2009 and Miguel et al (2016).…”
Section: Volume Estimatessupporting
confidence: 90%
“…In the last years, ANN have gained prominence in the forest environment, with applications in the estimation of the trees volume (Binoti et al, 2014;Miguel et al, 2016;Silva et al, 2009) growth and production , taper (Diamantopoulou, 2005;Leite et al, 2010), individual tree volume (Castro et al, 2013), total tree height (Binoti et al, 2013), and diametric distribution (Binoti et al, 2012), however further studies are still needed on the subject.…”
Section: Introductionmentioning
confidence: 99%
“…The use of neural networks to estimate height and volume of trees has been already reported (Silva et al 2009(Silva et al , Özçelik et al 2010(Silva et al , Özçelik et al 2013). The information on height and DBH was used as inputs in the configuration of the adopted network in those studies.…”
Section: Resultsmentioning
confidence: 98%
“…O modelo de Schumacher-Hall é particularmente difícil de ser superado, porque a conformação logarítmica e a combinação das variáveis independentes dap e altura lhe confere propriedades estatísticas muito favoráveis na estimativa volumétrica (SILVA et al, 2009). Ademais, sua simplicidade e praticidade facilitam o seu emprego no dia-adia.…”
Section: Ajuste De Equações Volumétricasunclassified