Granulosa cells proliferate and then undergo differentiation; an inverse relationship between these processes is observed during terminal follicular growth. During terminal follicular growth and initial luteinization, there is a necessary transition of granulosa cells to a less proliferative and highly steroidogenic form in response to LH. Although the expression of several molecules has been reported to be up-regulated by LH, proliferation/differentiation transition is not fully understood. Here, we show that the expression of a tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was induced with human chorionic gonadotropin (hCG) treatment in human luteinized granulosa cells. Pretreatment with hCG attenuated insulin-like growth factor (IGF)-1-induced phosphorylation of AKT and cell proliferation, not phosphorylation of ERK1/2. Moreover, suppression of hCG-induced PTEN expression with siRNA increased AKT phosphorylation and cell proliferation in response to IGF1. We also demonstrate that a PI3K inhibitor, LY294002, not a MEK inhibitor, PD98059, inhibited IGF1-induced cell proliferation. In conclusion, PTEN induced to express by hCG in luteinized granulosa cells that inactivates AKT, not ERK, and attenuates IGF1-induced cell proliferation. PTEN expression may be a trigger for proliferation/differentiation transition in human granulosa cells.