The isospin diffusion and other irreversible phenomena are discussed for a twocomponent nuclear Fermi system. The set of Boltzmann transport equations, such as employed for reactions, are linearized, for weak deviations of a system from uniformity, in order to arrive at nonreversible fluxes linear in the nonuniformities. Besides the diffusion driven by a concentration gradient, also the diffusion driven by temperature and pressure gradients is considered. Diffusivity, conductivity, heat conduction and shear viscosity coefficients are formally expressed in terms of the responses of distribution functions to the nonuniformities. The linearized Boltzmann-equation set is solved, under the approximation of constant form-factors in the distributionfunction responses, to find concrete expressions for the transport coefficients in terms of weighted collision integrals. The coefficients are calculated numerically for nuclear matter, using experimental nucleon-nucleon cross sections. The isospin diffusivity is inversely proportional to the neutron-proton cross section and is also sensitive to the symmetry energy. At low temperatures in symmetric matter, the diffusivity is directly proportional to the symmetry energy. PACS numbers: 21.65.+f,