Oxide coatings are corrosion resistant at elevated temperatures. They also show intensive phonon scattering and strong quantum confinement behavior. Such features allow them to be used as new materials for thermoelectric energy conversion and temperature measurement in harsh environments. This paper provides an overview on processing thermoelectric oxide coatings via various technologies. The first part deals with the thermoelectricity of materials. A comparison on the thermoelectric behavior between oxides and other materials will be made to show the advantages of oxide materials. In the second part of the paper, various processing technologies for thermoelectric metal oxide coatings in forms of thin film, superlattice, and nanograin powder will be presented. Vapor deposition, liquid phase deposition, nanocasting, solid state approach, and energy beam techniques will be described. The structure and thermoelectric property of the processed metal oxide coatings will be discussed. In addition, the device concept and applications of oxide coatings for thermoelectric energy conversion and temperature sensing will be mentioned. Perspectives for future research will be provided as well.