Alanine to glycine substitution in the PyR2 confers sodium channel resistance to Type I pyrethroids
Mengli Chen,
Likui Wang,
Xiangyi Zhou
et al.
Abstract:BACKGROUNDAedes aegypti is a primary urban vector of dengue, yellow fever, Zika and chikungunya worldwide. Pyrethroid insecticides are the most effective insecticides for controlling Ae. aegypti. However, pyrethroid resistance has developed due to the long‐term overuse of the insecticides, and many knockdown resistance (kdr) mutations have been identified in the resistant populations. A1007G, an alanine to glycine substitution, was found in resistant Ae. aegypti from Vietnam and Malaysia, which has always co‐e… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.