Inherent differences in the adaptive capacity of species to flexibly respond to extreme climatic events (ECEs) represent a key factor in their survivorship. We introduce and apply a conceptual framework linking knowledge about species’ current ecology and biology with variation in behavioral flexibility to ECEs. We applied it to 199 non-human primate species currently exposed to cyclones across the global tropics. Our findings suggest that species characterized by an increased ability to exploit a broad range of food types, social systems that permit subgrouping, and habitat types that span a range of environmental conditions may have greater success in coping with cyclones than more narrowly constrained or less adaptable primates. Overall, 15% of species, predominantly of the families Atelidae and Cercopithecidae, were assessed as having high or very high flexibility. In contrast, ~ 60% of primates were assessed with low or very low flexibility. These were species mainly belonging to the Cheirogaleidae, Lemuridae, Lepilemuridae, and Indriidae. While much work remains to better understand mechanisms driving differences in behavioral flexibility of species exposed to extreme climate across vertebrate lineages, our framework provides a workable approach that can improve estimates of current vulnerability to these phenomena and better inform conservation and management strategies.