Protein activities depend heavily on protein complex formation and dynamic post-translational modifications, such as phosphorylation. Their dynamic nature is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization and high-end microscopy. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to study protein-protein interactions (PPIs) and kinase activities in planta based on phase separation. This technology enabled easy detection of inducible, binary and ternary protein-protein interactions among cytoplasmic, nuclear and plasma membrane proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SnRK1 kinase activity, allowing us to visualize tissue-specific, dynamic SnRK1 activation upon energy deprivation in stable transgenic Arabidopsis plants. The applications of the SYMPL cloning toolbox lay the foundation for the exploration of PPIs, phosphorylation and other post-translational modifications with unprecedented ease and sensitivity.