“…Among recent preclinical studies dealing with peptide-based anticancer vaccines, we found of particular interest the works of: (1) Zhu and colleagues (from the National Institutes of Health, Bethesda, MD, USA), who developed self-assembling albumin-vaccine nanocomplexes that reportedly enable superior delivery and mediated robust therapeutic effect against transplantable tumors growing in immunocompetent mice, especially when combined with immune checkpoint blockers and chemotherapy; 94 (2) Gall et al (from the MD Anderson Cancer Center, Houston, TX, USA), who unveiled a Fc receptor-mediated mechanism whereby the FDA-approved HER2-targeting mAB trastuzumab favors the uptake of a HER2-targeting vaccine by DCs, resulting in efficient cross-presentation of its immunodominant epitope in vivo and robust therapeutic effects against breast carcinoma; 171 (3) Tsuruta et al (from Kumamoto University, Kumamoto, Japan), who developed DEP domain containing 1 (DEPDC1)- and M-phase phosphoprotein 1 (MPHOSPH1)-derived synthetic long peptides (SLPs) that efficiently induce both helper T (T H ) cells and CTLs in vitro and in vivo ; 172 (4) Petrizzu and collaborators (from the Istituto Nazionale per lo Studio e la Cura dei Tumori, Naples, Italy), who showed that metronomic chemotherapy plus a PD-1-targeting immune checkpoint blocker are highly efficient in potentiating the antitumor effects of a multi-peptide vaccine in a mouse model of melanoma; 173 and (5) Tanaka and co-workers (from the Yamaguchi University, Ube, Japan), who demonstrated that miR-125b-1 and miR-378a expression levels may be harnessed to predict the efficacy of peptide-based vaccination against colorectal carcinoma. 174 …”