1997
DOI: 10.1063/1.366461
|View full text |Cite
|
Sign up to set email alerts
|

AlGaAs/GaAs and InAlAs/InGaAs heterostructure barrier varactors

Abstract: By the Schrödinger and Poisson equations, we have theoretically investigated AlGaAs/GaAs and InAlAs/InGaAs single barrier varactors. The energy band structure, carrier distribution, and conduction current are fully exploited for varactor design. We have explained the experimental current–voltage and capacitance–voltage measurements very well. A simple analytical model for energy band structure is derived based on the Schrödinger and Poisson equation calculation. It is found that a barrier structure of 3 nm Al0… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
11
0
1

Year Published

2000
2000
2017
2017

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 27 publications
(13 citation statements)
references
References 10 publications
1
11
0
1
Order By: Relevance
“…We thus observe a kind of carrier confinement effect in the region of (345) 4 due to the oscillating bias. A re-distribution of the external bias is thus expected across the system.…”
mentioning
confidence: 92%
See 2 more Smart Citations
“…We thus observe a kind of carrier confinement effect in the region of (345) 4 due to the oscillating bias. A re-distribution of the external bias is thus expected across the system.…”
mentioning
confidence: 92%
“…A re-distribution of the external bias is thus expected across the system. Normally due to the high barriers in the system, the carrier density in the active region of (345) 4 is rather low (thus high resistivity), and the external dc bias applies almost linearly across region (345) 4 plus the depletion region [4]. With an ac bias, the carrier densities begin to build up at the left and right sides of the active region (Fig.…”
mentioning
confidence: 95%
See 1 more Smart Citation
“…Лучшие результаты для умножителей на основе ГБВ достигнуты с использо-ванием выращенных на подложках InP гетерострук-тур с несколькими последовательно расположенными барьерными слоями In 0.52 Al 0.48 As/AlAs/In 0.52 Al 0.48 As в матрице In 0.53 Ga 0.47 As, которые обеспечивают большую высоту потенциального барьера в зоне проводимости и подавление туннельных токов утечки. По результатам моделирования, выполненных в работе [5], для эф-фективного подавления туннельных токов утечки было предложено использовать в качестве оптимальной струк-туру барьера со следующей последовательностью слоев: 8 нм In 0.52 Al 0.48 As/3 нм AlAs/8 нм In 0.52 Al 0.48 As. В то же время из результатов экспериментальных исследований следует, что при указанной толщине AlAs-вставок общая оптимальная толщина барьерного слоя лежит в диапа-зоне 10−14 нм [6], что существенно меньше предсказан-ного моделью значения ∼ 19 нм.…”
Section: Introductionunclassified
“…The ratio between the conduction/valence band offset and the energy band gap difference is normally defined as the conduction/valence band offset coefficient when studying 29,30 By applying the same numerical method of energy band structure calculations for compositionally random In 0.53 Ga 0.47 As and In 0.52 Al 0.48 As alloys as in our earlier work, 24 we have obtained a valence band offset of 0.1 eV for InAs with respect to GaAs, in good agreement with experimental data of 0.1 Ϯ0.07 eV ͑Ref. 28͒ and 0.17 eV.…”
Section: Physical Model For the Strain Effectmentioning
confidence: 99%