Photosensory protein domains are the basis of optogenetic protein engineering. These domains originate from natural sources where they fulfill specific functions ranging from the protection against photooxidative damage to circadian rhythms. When used in synthetic biology, the features of these photosensory domains can be specifically tailored towards the application of interest, enabling their full exploitation for optogenetic regulation in basic research and applied bioengineering. In this work, we develop and apply a simple, yet powerful, directed evolution and high-throughput screening strategy that allows us to alter the most fundamental property of the widely used nMag/pMag photodimerization system: its light sensitivity. We identify a set of mutations located within the photosensory domains, which either increase or decrease the light sensitivity at sub-saturating light intensities, while also improving the dark-to-light fold change in certain variants. For some of these variants, photosensitivity and expression levels could be changed independently, showing that the shape of the light-activity dose-response curve can be tuned and adjusted. We functionally characterize the variants in vivo in bacteria on the single-cell and the population levels. We further show that a subset of these variants can be transferred into the mOptoT7 for gene expression regulation in mammalian cells. We demonstrate increased gene expression levels for low light intensities, resulting in reduced potential phototoxicity in long-term experiments. Our findings expand the applicability of the widely used Magnets photosensors by enabling a tuning towards the needs of specific optogenetic regulation strategies. More generally, our approach will aid optogenetic approaches by making the adaptation of photosensor properties possible to better suit specific experimental or bioprocess needs.