2022
DOI: 10.48550/arxiv.2210.17425
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Algebraic Convolutional Filters on Lie Group Algebras

Abstract: Group convolutional neural networks are a useful tool for utilizing symmetries known to be in a signal; however, they require that the signal is defined on the group itself. Existing approaches either work directly with group signals, or they impose a lifting step with heuristics to compute the convolution which can be computationally costly. Taking an algebraic signal processing perspective, we propose a novel convolutional filter from the Lie group algebra directly, thereby removing the need to lift altogeth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?