2016
DOI: 10.20948/prepr-2016-113
|View full text |Cite
|
Sign up to set email alerts
|

Algebraic Multigrid Method with adaptive smoothers based on Chebyshev polynomials

Abstract: Жуков В.Т., Краснов М.М., Новикова Н.Д., Феодоритова О.Б. Алгебраический многосеточный метод c адаптивными сглаживателями на основе многочленов Чебышева Для численного решения трехмерных эллиптических уравнений построен адаптивный алгебраический многосеточный метод (АММ). Новым элементом является объединение техники АММ с потенциалом сглаживателей на основе оптимальных многочленов Чебышева. Показаны возможности автоматической адаптации сглаживателей к границам дискретных операторов. Обсуждаются свойства двух с… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 5 publications
0
3
0
Order By: Relevance
“…(see [14]); here S p is the smoothing operator with the number of pre-and post-smoothing steps equal to p. For smoothing, we use adaptive smoothers of the Chebyshev type, which have been successfully used for geometric multigrid method for solving problems for stationary elliptic and evolutionary parabolic equations. The results related to AMM can be found in [17].…”
Section: Multigrid Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…(see [14]); here S p is the smoothing operator with the number of pre-and post-smoothing steps equal to p. For smoothing, we use adaptive smoothers of the Chebyshev type, which have been successfully used for geometric multigrid method for solving problems for stationary elliptic and evolutionary parabolic equations. The results related to AMM can be found in [17].…”
Section: Multigrid Methodsmentioning
confidence: 99%
“…The following important inequality holds: We provide a graphic presentation of the structure of the approximation error for the LI-M scheme. The formula (17) shows that the grid error is a linear combination of the errors of the explicit and implicit schemes with operator weights. Figure 2 shows the spectra of the weight factor for p = 5.…”
Section: Scheme Of Local Iterations Li-mmentioning
confidence: 99%
See 1 more Smart Citation