2021
DOI: 10.48550/arxiv.2107.00345
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Algebraic perspectives on signomial optimization

Abstract: Signomials are obtained by generalizing polynomials to allow for arbitrary real exponents. This generalization offers great expressive power, but has historically sacrificed the organizing principle of "degree" that is central to polynomial optimization theory. We reclaim that principle here through the concept of signomial rings, which we use to derive complete convex relaxation hierarchies of upper and lower bounds for signomial optimization via sums of arithmetic-geometric exponentials (SAGE) nonnegativity … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 63 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?