Let E be the infinite dimensional Grassmann algebra over a field F of characteristic 0. In this article we consider the algebra R of 2 × 2 matrices with entries in E and its subalgebra G, which is one of the minimal algebras of polynominal identity (PI) exponent 2. We compute firstly the Hilbert series of G and, as a consequence, we compute its cocharacter sequence. Then we find the Hilbert series of R, using the tool of proper Hilbert series, and we compute its cocharacter sequence. Finally we describe explicitely the 2 -graded cocharacters of R.