2021
DOI: 10.1080/14029251.2015.1079423
|View full text |Cite
|
Sign up to set email alerts
|

Algebro-geometric Constructions of Quasi Periodic Flows of the Discrete Self-dual Network Hierarchy and Applications

Abstract: In this paper we obtain the discrete integrable self-dual network hierarchy associated with a discrete spectral problem. On the basis of the theory of algebraic curves, the continuous flow and discrete flow related to the discrete self-dual network hierarchy are straightened using the Abel-Jacobi coordinates. The meromorphic function and the Baker-Akhiezer function are introduced on the hyperelliptic curve. Quasi-periodic solutions of the discrete self-dual network hierarchy are constructed with the help of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?