Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps
Xiaoxue Xu,
Cewen Cao,
Frank W Nijhoff
Abstract:The Q1 lattice equation, a member in the Adler-Bobenko-Suris list of 3D consistent lattices, is investigated. By using the multidimensional consistency, a novel Lax pair for Q1 equation is given, which can be nonlinearised to produce integrable symplectic maps. Consequently, a Riemann theta function expression for the discrete potential is derived with the help of the Baker-Akhiezer functions. This expression leads to the algebro-geometric integration of the Q1 lattice equation, based on the commutativity of d… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.