Adeno-associated virus (AAV) has emerged as a leading platform for gene delivery for treating various diseases due to its excellent safety profile and efficient transduction to various target tissues. However, the large-scale production and long-term storage of viral vectors is not efficient resulting in lower yields, moderate purity, and shorter shelf-life compared to recombinant protein therapeutics. This review provides a comprehensive analysis of upstream, downstream and formulation unit operation challenges encountered during AAV vector manufacturing, and discusses how desired product quality attributes can be maintained throughout product shelf-life by understanding the degradation mechanisms and formulation strategies. The mechanisms of various physical and chemical instabilities that the viral vector may encounter during its production and shelf-life because of various stressed conditions such as thermal, shear, freeze-thaw, and light exposure are highlighted. The role of buffer, pH, excipients, and impurities on the stability of viral vectors is also discussed. As such, the aim of this review is to outline the tools and a potential roadmap for improving the quality of AAV-based drug products by stressing the need for a mechanistic understanding of the involved processes.