Abstract:We report estimates of the amount, distribution, and uncertainty of aboveground biomass (AGB) of the different ecoregions and forest land cover classes within the North American boreal forest, analyze the factors driving the error estimates, and compare our estimates with other reported values. A three-phase sampling strategy was used (i) to tie ground plot AGB to airborne profiling lidar metrics and (ii) to link the airborne estimates of AGB to ICESat-GLAS lidar measurements such that (iii) GLAS could be used as a regional sampling tool. We estimated the AGB of the North American boreal forest at 21.8 Pg, with relative error of 1.9% based on 256 GLAS orbits (229 086 pulses). The distribution of AGB was 46.6% for western Canada, 43.7% for eastern Canada, and 9.7% for Alaska. With a single exception, relative errors were under 4% for the three regions and for the major cover types and under 10% at the ecoregion level. The uncertainties of the estimates were calculated using a variance estimator that accounted for only sampling error, i.e., the variability among GLAS orbital estimates, and airborne to spaceborne regression error, i.e., the uncertainty of the model coefficients. Work is ongoing to develop robust statistical techniques for integrating other sources of error such as ground to air regression error and allometric error. Small ecoregions with limited east-west extents tended to have fewer GLAS orbits and a greater percent sampling error. AGB densities derived from GLAS agreed closely with the estimates derived from both forest inventories (<17%) and a MODIS-based interpolation technique (<26%) for more southern, well-inventoried ecoregions, whereas differences were much greater for unmanaged northern and (or) mountainous ecoregions.Key words: aboveground biomass, lidar, North American boreal forest, ICESat-GLAS, Landsat, MODIS, forest inventory, kNN.RĂ©sumĂ© : Nous prĂ©sentons les estimations de quantitĂ©, distribution et incertitude de la biomasse aĂ©rienne de diffĂ©rentes rĂ©gions Ă©cologiques et de diffĂ©rentes classes de couverts forestiers en AmĂ©rique du Nord, analysons les facteurs contrĂŽlant les erreurs d'estimation, et comparons nos rĂ©sultats avec ceux de la littĂ©rature. Un dispositif d'Ă©chantillonnage en trois Ă©tapes a Ă©tĂ© utilisĂ© (i) pour associer la biomasse mesurĂ©e dans des placettes d'inventaire aux profils de lidar aĂ©roportĂ© et (ii) pour relier les estimations lidar aĂ©roportĂ© de biomasse aux mesures d'ICESat-GLAS, de sorte que (iii) GLAS puisse ĂȘtre utilisĂ© comme outil d'Ă©chantillonnage rĂ©gional. Ă partir de 156 orbites GLAS (229 086 impulsions), nous avons estimĂ© la biomasse aĂ©rienne de la forĂȘt borĂ©ale d'AmĂ©rique du Nord Ă 21.8 Pg avec une erreur relative de 1.9 %. La distribution de la biomasse aĂ©rienne Ă©tait de 46.6 % pour l'ouest du Canada, 43.7 % pour l'est du Canada, et 9.7 % pour l'Alaska. Avec une seule exception, les erreurs relatives Ă©taient infĂ©rieures Ă 4 % pour les trois rĂ©gions et pour les principaux types de couvert, et infĂ©rieures Ă 10 % Ă l'Ă©chelle des rĂ©gions Ă©cologiques...