“…( 2011)presentedarobustandfastword-wiseidentificationmethodbyisolatingpages, blocks,andparagraphsfromreal-worldbi-lingualdatasets.Theirmethodperformedpreprocessing first,thenfoundtexturefeaturesatpageandblocklevelsandstructuralfeaturesatwordlevel,then usedprofilebasedsegmentationforblocksandwords,andfinally,performedSVMclassification atpageandblocklevelsandRejectionbasedclassificationusingAdaBoostatthewordlevel.The scriptidentificationmethodproposedbyRani,Dhir,andLehal(2012)recognizedbi-scriptwords through preprocessing, feature extraction of structural, Gabor and Discrete Cosine Transforms (DCT), and finally, classification by SVM, K Nearest Neighbor (KNN) and Probabilistic Neural Network(PNN).Nextword-levelidentificationtechniqueclassifiedbi-scriptdocumentsbyusing worddirectionalenergydistributionfeaturesofGaborfiltersalongwithsuitablefrequenciesand orientations (Chaudhari & Gulati, 2016). Bebartta and Mohanty (2017) 2018)reviewedwordrecognitiontechniquesforIndicandnon-Indicscripts bydiscussingtheirexperimentalresults,databases,recognitionaccuracies,potentialbenefits,and future recommendations for Indic scripts, such as Bengali, Devanagari, Gujarati, Gurumukhi, Kannada,Maithili,Malayalam,Oriya,Tamil,andTelugu,andnon-Indicscripts,suchasArabic, Chinese,Dutch,Japanese,Latin/Roman,Mongolian,Persian,Thai,andUyghur.Theydiscussedword recognitiontypes,approaches,needs,advantages,disadvantages,issues,andchallengesalongwith surveyprotocols,theirdevelopment,conduct,resultanalysis,reporting,andfindings.Theyfound theneedofadvancedprinted/handwrittendocumentrecognitiontechniquesandwordsegmentation algorithmstoachievehighwordrecognitionaccuracy.GhoshandValveny(2018)proposedafast, segmentation-free,wordspottingmethod,andfollowedthestepsofatomicboundingboxgeneration tocreatetextboxandfilterproposals,PyramidalHistogramofCharacters(PHOC)featureencoding toevaluatetheseproposals,performedindexingbyusingPyramidalHistogramofCharacterN-grams (PHON),andfinally,attributemodellearningbyLSVM.Theirmethodshowedtheperformance forquery-by-stringandquery-by-examplewithstandardsingleandmulti-writerdatasets.Table2 providesthecomparisonsamongwordrecognitionandspottingtechniquesfortheyearrange2014 to2018,whichdiscriminatesthesetechniqueswiththeindicatorsofprintedandhandwritten,script andlanguage,datasetandsize,classifierused,theaccuracyachieved,andconstraints,errors,and futuredirections.…”