2007
DOI: 10.1016/j.ic.2006.10.004
|View full text |Cite
|
Sign up to set email alerts
|

Algorithmic complexity bounds on future prediction errors

Abstract: We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor M from the true distribution μ by the algorithmic complexity of μ . Here we assume that we are at a time t>1 and have already observed x = x 1...xt . We bound the future prediction performance on xt+1xt+2... by a new variant of algorithmic complexity of μ given x, plus the complexity of the randomness deficiency of x. The new complexity is monotone in … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
8
0
1

Year Published

2007
2007
2017
2017

Publication Types

Select...
3
3

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(9 citation statements)
references
References 21 publications
0
8
0
1
Order By: Relevance
“…Если рассматривать условия как вершины дерева и требовать монотонности по этому аргументу, получатся четыре других вида условной сложности, которые, од-нако, практически не рассматривались (работа [29] | одно из редких исключений).…”
Section: монотонная и априорная сложности и случайностьunclassified
“…Если рассматривать условия как вершины дерева и требовать монотонности по этому аргументу, получатся четыре других вида условной сложности, которые, од-нако, практически не рассматривались (работа [29] | одно из редких исключений).…”
Section: монотонная и априорная сложности и случайностьunclassified
“…This notion was introduced by Vovk and Pavlovic [8]. It turns out that plain stopping time complexity of a binary string x could be equivalently defined as (a) the minimal plain complexity of a Turing machine that stops after reading x on a one-directional input tape; (b) the minimal plain complexity of an algorithm that enumerates a prefix-free set containing x; (c) the conditional complexity C(x | x * ) where x in the condition is understood as a prefix of an infinite binary sequence while the first x is understood as a terminated binary string; (d) as a minimal upper semicomputable function K such that each binary sequence has at most 2 n prefixes z such that K(z) < n; (e) as max C X (x) where C X (z) is plain Kolmogorov complexity of z relative to oracle X and the minimum is taken over all extensions X of x.We also show that some of these equivalent definitions become non-equivalent in the more general setting where the condition y and the object x may differ, and answer some open question from Chernov, Hutter and Schmidhuber [2].…”
mentioning
confidence: 63%
“…We also show that some of these equivalent definitions become non-equivalent in the more general setting where the condition y and the object x may differ, and answer some open question from Chernov, Hutter and Schmidhuber [2].…”
mentioning
confidence: 66%
See 2 more Smart Citations