2020
DOI: 10.48550/arxiv.2007.05330
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Algorithmic differentiation of hyperbolic flow problems

Michael Herty,
Jonathan Hüser,
Uwe Naumann
et al.

Abstract: We are interested in the development of an algorithmic differentiation framework for computing approximations to tangent vectors to scalar and systems of hyperbolic partial differential equations. The main difficulty of such a numerical method is the presence of shock waves that are resolved by proposing a numerical discretization of the calculus introduced in Bressan and Marson [Rend. Sem. Mat. Univ. Padova, 94:79-94, 1995]. Numerical results are presented for the one-dimensional Burgers equation and the Eule… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?