Liquid crystalline behaviour is generally limited to a select group of specially designed bulk substances. By contrast, it is a common feature of simple molecular monolayers and other quasi-two-dimensional systems, which often possess a type of in-plane ordering that results from unbinding of dislocations-a 'hexatic' liquid crystalline phase. The flow of monolayers is closely related to molecular transport in biological membranes, affects foam and emulsion stability and is relevant to microfluidics research. For liquid crystalline phases, it is important to understand the coupling of the molecular orientation to the flow. Orientationally ordered (nematic) phases in bulk liquid crystals exhibit 'shear aligning' or 'tumbling' behaviour under shear, and are described quantitatively by Leslie-Ericksen theory. For hexatic monolayers, the effects of flow have been inferred from textures of Langmuir-Blodgett films and directly observed at the macroscopic level. However, there is no accepted model of hexatic flow at the molecular level. Here we report observations of a hexatic Langmuir monolayer that reveal continuous, shear-induced molecular precession, interrupted by occasional jump discontinuities. Although superficially similar to tumbling in a bulk nematic phase, the kinematic details are quite different and provide a possible mechanism for domain coarsening and eventual molecular alignment in monolayers. We explain the precession and jumps within a quantitative framework that involves coupling of molecular orientation to the local molecular hexatic 'lattice', which is continuously deformed by shear.