The development of low-carbon alkali-activated binders based on production waste is one of the most sought-after areas of development of building materials science. The article examines the results of studies of the structures of cupola dust and the assessment of its ability to hydrate when exposed to alkaline activation. Technological preparation of dust by sifting it through a 0.16 mm sieve and subsequent mechanical activation for 120 s to a specific surface area of 733 m2/kg is proposed. The best results were shown by the composition of cupola dust with an alkaline activator of 50 wt.% 8.3 M NaOH and 50 wt.% Na2SiO3. After 28 days of natural hardening for this composition, the bending strength was 12.7 MPa and the compressive strength was 68.3 MPa. The analysis of the influence of hardening conditions showed that the temperature–humidity treatment of concrete at a temperature of 90 °C for 12 h accelerates the process of curing to 80–90% of natural conditions. The porosity of the samples after heating was established, which is 24–25%. The mineralogical composition of the products of the cement matrix structure’s formation, which is represented by minerals of the zeolite group, was specified.