The large alkaline earths (Ae), calcium, strontium and barium, have in the past 15 years yielded a brand new generation of heteroleptic molecular catalysts for the production of fine chemicals. However, the integrity of these complexes is often plagued by ligand redistribution equilibria in solution. This personal account retraces the paths followed in our research group towards the design of stable heteroleptic alkalino-earth complexes, including the use of intramolecular noncovalent Ae···H-Si and Ae···F-C interactions. Their implementation as homogenous precatalysts for reactions such as the intramolecular and intermolecular hydroamination and hydrophosphination of activated alkenes, the hydrophosphonylation of ketones, and the dehydrogenative coupling of amines and hydrosilanes that enable the efficient and controlled formations of CP, CN, or SiN σ-bonds, is presented in a synthetic perspective that highlights their overall outstanding catalytic performance.