The effects of temperature and penetrant activity on the sorption kinetics and equilibria of a series of alkanes in glassy, biaxially oriented polystyrene were studied. Normal isomers of pentane, hexane, and heptane cause crazing of polystyrene film samples at high penetrant activities (> 0.85). Crazing kinetics are identical to the kinetics of Case II transport. Transport of these normal hydrocarbons in glassy polystyrene in the temperature range 25 to 50°C is markedly non‐Fickian; limiting Case II transport is observed at activities in exces of 0.6. Sorption appears to be controlled by highly activated relaxation processes including primary bond breakage at these high penetrant activities. Fickian diffusion behavior is approached, however, as penetrant activity is reduced. Sorption of the branched isomers of these compounds does not result in polymer microfailure. The sorption kinetics of the branched isomers, although time dependent, appear to be controlled primarily by thermally activated diffusion rather than large scale polymer relaxations which control Case II transport.