With the continuous development of organic semiconductor materials and on‐going improvement of device technology, the power conversion efficiencies (PCEs) of organic solar cells (OSCs) have surpassed the threshold of 19%. Now, the low production cost of organic photovoltaic materials and devices have become an imperative demand for its practical application and future commercialization. Herein, the feasibility of simplified synthesis for cost‐effective small‐molecule acceptors via end‐cap isomeric engineering is demonstrated, and two constitutional isomers, BTP‐m‐4Cl and BTP‐o‐4Cl, are synthesized and compared in parallel. These two non‐fullerene acceptors (NFAs) have very similar optoelectronic properties but nonuniform morphological and crystallographic characteristics. Consequently, the OSCs composed of PM6:BTP‐m‐4Cl realize PCE of 17.2%, higher than that of the OSCs with PM6:BTP‐o‐4Cl (≈16%). When ternary OSCs are fabricated with PM6:BTP‐m‐4Cl:BTP‐o‐4Cl, the averaged PCE value reaches 17.95%, presenting outstanding photovoltaic performance. Most excitingly, the figure of merit (FOM) values of PM6:BTP‐m‐4Cl, PM6:BTP‐o‐4Cl, and PM6:BTP‐m‐4Cl:BTP‐o‐4Cl based devices are 0.190, 0.178, and 0.202 respectively. The FOM values of these systems are all among the top ones of the current high‐efficiency OSC systems, revealing high cost‐effectiveness of the two NFAs. This work provides a general but accessible strategy to minimize the efficiency‐cost gap and promises the economic prospects of OSCs.