2019
DOI: 10.1103/physreve.100.022126
|View full text |Cite
|
Sign up to set email alerts
|

All binary number-conserving cellular automata based on adjacent cells are intrinsically one-dimensional

Abstract: A binary number-conserving cellular automaton is a discrete dynamical system that models the movement of particles in a d-dimensional grid. Each cell of the grid is either empty or contains a particle. In subsequent time steps the particles move between the cells, but in one cell there can be at most one particle at a time. In this paper, the von Neumann neighborhood is considered, which means that in each time step a particle can move to an adjacent cell only. It is proven that regardless of the dimension d, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 18 publications
0
1
0
2
Order By: Relevance
“…The decomposition theorem applies to any state set and any dimension. By means of this new tool, it has been proven possible to enumerate all NCCAs in the case of some state sets and dimensions, which, up to now, were beyond the capabilities of computers (see, for example, [34,35]), and also, what is even more valuable, it was possible to prove some general facts about NCCAs (see [36,37]).…”
Section: K−1}mentioning
confidence: 99%
“…The decomposition theorem applies to any state set and any dimension. By means of this new tool, it has been proven possible to enumerate all NCCAs in the case of some state sets and dimensions, which, up to now, were beyond the capabilities of computers (see, for example, [34,35]), and also, what is even more valuable, it was possible to prove some general facts about NCCAs (see [36,37]).…”
Section: K−1}mentioning
confidence: 99%
“…Conforme discutido em [Wolnik and De Baets 2019a], regras que seguem os comportamentos listados a seguir, tanto em ACs unidimensionais quanto em ACs bidimensionais com vizinhança de von Neumann binários, são conservativas:…”
Section: Definições Básicasunclassified
“…Em [Wolnik et al 2017], foram apresentadas as condições necessárias e suficientes para que ACs de dimensões e de estados arbitrários em vizinhança de von Neumann sejam conservativos. Em [Wolnik and De Baets 2019a], foi provado que todos os ACs binários conservativos são intrinsecamente unidimensionais em vizinhança de von Neumann, independente de suas dimensões, istoé, sempre existirá 4d + 1 regras conservativas, sendo elas a identidade, os deslocamentos e as regras de tráfego. Em [Wolnik and De Baets 2019b], foi mostrado um novo método de estudo de reversibilidade em ACs conservativos k-ários d-dimensionais com vizinhança de von Neumann, utilizando-se do método da decomposição de regras por divisão e perturbação (split-andpertubation decomposition); nesse trabalho, o foco foi mostrar que ACs conservativos reversíveis ternários d-dimensionais não são suficientes para decretar a existência de ACs não triviais com as características citadas anteriormente.…”
Section: Introductionunclassified