This paper shows that every Gromov hyperbolic group can be described by a finite subdivision rule acting on the 3-sphere. This gives a boundary-like sequence of increasingly refined finite cell complexes which carry all quasi-isometry information about the group. This extends a result from Cannon and Swenson in 1998 that hyperbolic groups can be described by a recursive sequence of overlapping coverings by possibly wild sets, and demonstrates the existence of non-cubulated groups that can be represented by subdivision rules.