A novel architecture of optical code (OC) label generation and recognition for optical packet switching (OPS) by using super structured fiber Bragg grating (SSFBG) is proposed. The OC label is generated and recognized by a label generator and recognizer, respectively. The label generator is composed of N encoders in parallel, and it can generate 2N kinds of serial optical code labels (SOCLs) for indicating 2N network routing information. The label recognizer can decode SOCLs by N decoders in parallel and provides label information to the switching control unit so that clock information is not required during the decoding process. In the switch nodes, handling of the high-speed information payload stream and the recognition of the OC label are performed in the optical domain, while processing of the routing information remains in the electrical domain. This approach could be a promising solution for an OPS network with high capacity, good quality of service (QoS), multi-service function and high security. In this experiment, we demonstrate 40 Gbps 256 label optical packet switching that employs clockless SOCL processing.