In this paper, we expound a modulation concept to contrive simultaneous frequency down-conversion based on a three parallel Semiconductor Optical Amplifier Mach-Zehnder Interferometers (SOA-MZIs) link by using a band pass sampling method in a Virtual Photonics Inc. simulator. Each SOA-MZI is deployed to achieve a down-converted signal, which has ten replicas related to the first ten harmonic ranks of the sampling signal, at the SOA-MZI outer port. Then, the admixture of the three down-converted signals yields a sampled signal, which is called a simultaneous down-converted signal that contains thirty different replicas. The positive down-conversion gains with top values are reached with the sampling parallel SOA-MZIs link. Moreover, we evaluated the quality of the parallel SOA-MZIs transmission system over orthogonal frequency division multiplexing (OFDM) complex modulated signals using the error vector magnitude values as a performance index. The utmost bit rate attained is 2 Gbit/s for OFDM modulations.