Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell’s nonlocality. Among which, Bell’s nonlocality is the strongest type. Bell’s nonlocality for quantum states is usually detected by violation of some Bell’s inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestation of nonlocality intermediate between entanglement and Bell’s nonlocality. This peculiar feature has led to a curious quantum phenomenon, the one-way Einstein-Podolsky-Rosen steering. The one-way steering was an important open question presented in 2007, and positively answered in 2014 by Bowles et al., who presented a simple class of one-way steerable states in a two-qubit system with at least thirteen projective measurements. The inspiring result for the first time theoretically confirms quantum nonlocality can be fundamentally asymmetric. Here, we propose another curious quantum phenomenon: Bell nonlocal states can be constructed from some steerable states. This novel finding not only offers a distinctive way to study Bell’s nonlocality without Bell’s inequality but with steering inequality, but also may avoid locality loophole in Bell’s tests and make Bell’s nonlocality easier for demonstration. Furthermore, a nine-setting steering inequality has also been presented for developing more efficient one-way steering and detecting some Bell nonlocal states.