The waltzer (v) mouse mutant harbors a mutation in Cadherin 23
(Cdh23) and is a model for Usher syndrome type 1D, which is
characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of
progressive retinitis pigmentosa. In mice, functionally null Cdh23
mutations affect stereociliary morphogenesis and the polarity of both cochlear and
vestibular hair cells. In contrast, the murine Cdh23ahl
allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to
age-related hearing loss in many inbred strains. We produced congenic mice by crossing
mice carrying the v niigata (Cdh23v-ngt) null
allele with mice carrying the hypomorphic Cdh23ahl allele on
the C57BL/6J background, and we then analyzed the animals’ balance and hearing phenotypes.
Although the
Cdh23v-ngt/ahl
compound heterozygous mice exhibited normal vestibular function, their hearing ability was
abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and
rapid age-dependent elevation of ABR thresholds compared with
Cdh23ahl/ahl
homozygous mice. We found that the stereocilia developed normally but were progressively
disrupted in
Cdh23v-ngt/ahl mice.
In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate
the mechanoelectrical transduction channels in hair cells. We hypothesize that the
reduction of Cdh23 gene dosage in
Cdh23v-ngt/ahl mice
leads to the degeneration of stereocilia, which consequently reduces tip link tension.
These findings indicate that CDH23 plays an important role in the maintenance of tip links
during the aging process.