Background: Specific immunotherapy, including agonists for Toll-like receptor 2 (TLR2), have been shown to protect from allergies and to have a high immunomodulatory capacity. Methods: A new antibody, TSP-2, reactive against an epitope of the extracellular domain of TLR2, was identified. The effect of the antibody on dendritic cells was assessed by immunohistochemistry, Western blot, and flow cytometric analysis. The effect of TSP-2 in a murine asthma model induced with ovalbumin (OVA) was assessed. The model is a form of airway hyperresponsiveness (AHR) and was analyzed by whole-body plethysmography, the measurement of Th1/Th2 cytokines in bronchial alveolar lavage fluid (BALF) and serum by ELISA, and the CCK-8 assay for lymphocyte proliferation. The effect of TSP-2 on the maturation of bone marrow-derived dendritic cells (BMDCs) was assessed by flow cytometric analysis. Results: TSP-2 promoted the maturation of dendritic cells and the proliferation of lymphocyte in vitro and in vivo. The effect of TSP-2 on T helper 1 (Th1)/Th2 cytokine secretion was slightly more powerful than that of Pam3CSK4. TSP-2 antibody reduced AHR and OVA-specific IgE levels in allergic asthma. TSP-2 antibody also reduced lung inflammation and decreased leukocyte numbers in an OVA-sensitized and challenged asthma model. TSP-2 antibody increased OVA-stimulated I-A, CD80, CD86, and MHC-II levels on BMDCs. Conclusions: This study identifies a novel therapeutic strategy for AHR, which uses antibodies reactive against TLR2. It also provides theoretical evidence for the control of allergic asthma by targeting TLR2.