Key message
Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens.
Abstract
The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.