A trial was conducted to evaluate whether nitrate reductase (NR) participates in salicylic acid (SA)-improved water stress (WS) tolerance in pepper (Capsicum annuum L.) plants. Before starting WS treatment, 0.5 mM SA was applied to half of the well-watered (WW) plants as well as to WS-plants as a foliar spray once a day for a week. The soil water holding capacity was maintained at 40 and 80% of the full water storing capacity for WS and and well-watered (WW) plants, respectively. Water stress caused substantial decreases in total plant dry weight, F v /F m , chlorophyll a and b, relative water content, leaf water potential (ΨI) by 53, 37, 49, 21, 36 and 33%, respectively relative to control, but significant increases in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), electrolyte leakage (EL), methylglyoxal (MG), proline, key antioxidant enzymes' activities, NO and NR activity. The SA reduced oxidative stress, but improved antioxidant defence system, ascorbate-glutathione (AsA-GSH) cycle enzymes, glyoxalase system-related enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II), plant growth, photosynthetic traits, NO, NR and proline. SA-induced WS tolerance was further improved by supplementation of sodium nitroprusside (SNP), a donor of NO. NR inhibitor, sodium tungstate (ST) was applied in conjunction with SA and SA + SNP to the WW and WS-plants to assess whether NR contributes to SA-improved WS tolerance. ST abolished the beneficial effects of SA by reducing NO and NR activity in WS-pepper, but the application of SNP along with SA + ST reversed negative effects of ST, showing that NO and NR are jointly needed for SA-induced WS tolerance of pepper plants.