Matching of human leukocyte antigen (HLA) alleles between donors and recipients plays a major role in hematopoietic stem cell transplantation (HSCT). Null or questionably expressed HLA allelic variants are a major issue in HLA matching, because the aberrant expression of such alleles can have a major impact on the outcome of HSCT and/or its complications such as graft-versus-host disease. The goal of this study was to investigate the potential of a recently developed cytokine-induced secretion assay to differentiate the expression levels of HLA-A*32:11Q (questionable) into a null (N) or low (L) expression variant. An amino acid mutation at position 164 of HLA-A*32:11Q disrupts the disulfide bridge in the α2 domain. HLA-A*32:11Q is not detectable by standard microlymphocytotoxicity assay. To this end, we cloned soluble HLA-A*32:11Q and a reference allele (HLA-A*32:01) into expression vectors and transfected/transduced HEK293 and K562 cells. Allele-expressing K562 cells were simultaneously transfected/transduced with a β2-microglobulin (B2M)-encoding vector to ensure the intact HLA structure with B2M. After treatment with proinflammatory cytokines, secreted soluble HLA molecules were determined by enzyme-linked immunosorbent assay in the supernatant and intracellular accumulation of the recombinant proteins by flow cytometry. HLA-A*32:11Q was nearly undetectable in untreated transfectants. Cytokine treatment increased the secretion of HLA-A*32:11Q to detectable levels and resulted in intracellular accumulation of the allele. There was no difference in mRNA transcription between the A*32 alleles. On the basis of these results, we recommend reclassification of HLA-A*32:11Q as a low expression (L) variant.